Price, Strategy, and Market Friction

YANG Chen

Department of Systems Engineering and Engineering Management
The Chinese University of Hong Kong

Workshop on Quantitative Finance July 19–20, 2022

About Me

- Background:
 - PhD: Dept. of Math, National University of Singapore;
 - Postdoc: Dept. of Math, ETH Zürich;
 - Assistant Professor: SEEM CUHK since 2019 Fall.
- Research Area: Market Frictions, Portfolio Selection, FinTech

Price

Frictions

Transaction Costs Price Impact Capital Gains Tax Market Closure

Strategy

Portfolio Allocation Hedging Market Making

Market Frictions

- Transaction Costs: costs per transaction (fixed or proportional to the transaction amount);
 - Charged by broker; Bid-ask spread.
- Price Impact: purchasing or selling moves the price against the trader;
 - Inversely related to liquidity.
- Capital Gains Tax: paid for realizing capital gains, but rebated for realizing capital losses;
 - Rate can be as high as 40%.

卖五	762.52	8	
卖四	762.50	48	+14
卖三	762.49	3	+1
卖二	762.43	2	-3
卖一	762.30 ↓	1	+1
买一	762.06 4	1	+1
买二	762.05		
买三	762.03	9	+9
买四	762.01	17	+17
买五	762.00	94	+94

Merton Model

Consider the classic finite-horizon Merton model

Stock price

$$dS_t = \mu S_t dt + \sigma S_t dB_t.$$

• Portfolio value W_t , for which π_t is the fraction of W_t in stock

$$dW_t = (1 - \pi_t)rW_tdt + \pi_t(\mu W_tdt + \sigma W_tdB_t).$$

Objective:

$$\sup_{\pi} \mathbb{E}[\mathcal{U}(W_T)], \ \mathcal{U}(x) = \frac{x^{1-\gamma}}{1-\gamma}, \ \gamma \neq 1.$$

• Solution:


$$\pi_t^* = \frac{\mu - r}{\gamma \sigma^2}.$$

 Economic Implication: Optimal risk exposure via optimal return-risk trade-off.

4

Example: Classic Proportional Transaction Cost Model

- Optimal strategy: there exist a(t) < b(t), such that:
 - $\pi_t < a(t)$: Buy;
 - $\pi_t > b(t)$: Sell;
 - $a(t) \le \pi_t \le b(t)$: No transaction.
- Economic Implication: Trade-off between optimal exposure and cost.

Price

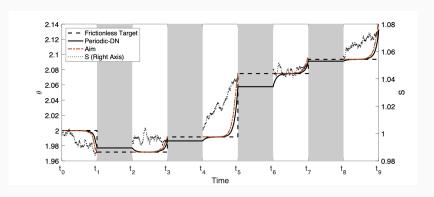
Frictions

Transaction Costs
Price Impact
Capital Gains Tax
Market Closure

Portfolio Allocation Hedging Market Making

LETF Rebalancing (MS, Forthcoming)

Min Dai, Steven Kou, Mete Soner and Chen Yang, Leveraged ETFs with Market Closure and Frictions, **Management Science**, forthcoming.


- Leveraged ETFs: track β times the index **daily** return;
- Continuous control, discrete monitoring;
- State: $(t, S, X, \theta; \bar{S}, \bar{X})$
- Goal:

$$\min_{\varphi} \sum_{i=0}^{\infty} e^{-\rho t_i} E\left[\frac{1}{2} X_{t_i}^2 \left(R_{t_{i+1}}^X - \beta R_{t_{i+1}}^S\right)^2 + \int_{t_i}^{t_{i+1}} \frac{\Lambda}{2} S_u^2 \varphi_u^2 du\right]$$

LETF Rebalancing (MS, Forthcoming)

• Economic Implication:

- Trade-off between (1) current optimal exposure; (2) future optimal exposure; (3) trading speed to minimize cost.
- The model can match the level of empirical slippage and explain the weekend effect.

Hedging

Market Making

Frictions

Transaction Costs
Price Impact
Capital Gains Tax
Market Closure

Optimal Trading on LOB (Working Paper)

Nan Chen, Min Dai, Qiheng Ding and Chen Yang, Optimal Investment under Block-Shaped Order Books, **Working Paper**.

- Trading increases the spread, but the spread will reduce over time due to resilience.
- Therefore, timing the trade can lead to lower trading cost.
- Economic Implication: Trade-off between (a) current optimal exposure;
 (b) future optimal exposure;
 (c) trade timing to minimize cost

卖五	762.52	8	
卖四	762.50	48	+14
卖三	762.49	3	+1
卖二	762.43	2	-3
卖一	762.30 🕹	1	+1
买一	762.06 4	1	+1
买二	762.05		
买三	762.03	9	+9
买四	762.01	17	+17
买五	762.00	94	+94

Price

Frictions

Transaction Costs
Price Impact
Capital Gains Tax
Market Closure

Portfolio Allocation Hedging Market Making

Capital Gains Tax Model (RFS 2015)

Min Dai, Hong Liu, Chen Yang, and Yifei Zhong, Optimal Tax-timing with Asymmetric Long-term/short-term Capital Gains Tax, **The Review of Financial Studies**, 28.9:2687-2721, 2015.

• Denote K_t as the purchasing cost. Selling $dM_t \in (0,1]$ fraction of stocks incurs capital gains tax

$$\alpha(Y_t - K_t)dM_t$$
.

- Existing theoretical model: investors should realize losses immediately to get tax rebate.
- Empirical puzzle: many investors hold onto short-term and even long-term losses.
- **Economic Implication:** our model explains the empirical observation via asymmetric long/short-term rates and realistic tax code features.

Liquidity Premia (MOR, Forthcoming)

Johannes Muhle-Karbe, Xiaofei Shi, and Chen Yang, An Equilibrium Model for the Cross-Section of Liquidity Premia, **Mathematics of Operations Research**, forthcoming.

- Price process $dS_t = \mu_t dt + \sigma_t dB_t$.
- $(\mu,\sigma) \to \text{investor's strategy } \varphi^i$ (maximizing return, minimizing risk and trading cost).
- Market clearing: $\sum \varphi^i = s$.
- Economic Implication: "Liquidity CAPM" involving the impact of market risk, market frictions, heterogeneity in investor risk preference, and individual trading motives.

$$\mu \sim \bar{\gamma} \alpha \alpha^{\top} s + \lambda^{1/2} \frac{\gamma^2 - \gamma^1}{\sqrt{2(\gamma^1 + \gamma^2)}} \left[\bar{\gamma} \bar{\Lambda} A^{-1} \alpha (\xi + \xi^{\top}) \alpha^{\top} s + A \dot{\bar{\varphi}} \right].$$

Market Closure

MM in High-Frequency Trading (SIFIN 2020)

Sebastian Herrmann, Johannes Muhle-Karbe, Dapeng Shang, and Chen Yang, Inventory Management for High-frequency Trading with Imperfect Competition, **SIAM Journal on Financial Mathematics**, 11(1):1-26, 2020.

- High-Frequency traders
 - have inside information about fundamental price S;
 - maximize return and minimize inventory;
 - Nash competition under inventory aversion.
- Market maker
 - no inside information;
 - set execution price P.
- In equilibrium: $P_n S_{n-1} = \lambda \Delta L_n + \mu M_{n-1}$
- Economic Implication:
 - Competition and risk aversion cause HFTs to overexploit the inside info, which improves market liquidity;
 - penalizing HFT by increasing transaction taxes in fact decreases market liquidity.

Reference

- Min Dai, Hong Liu, Chen Yang, and Yifei Zhong, Optimal Tax-timing with Asymmetric Long-term/short-term Capital Gains Tax, The Review of Financial Studies, 28.9:2687-2721, 2015.
- Min Dai, Steven Kou, Mete Soner and Chen Yang, Leveraged ETFs with Market Closure and Frictions, Management Science, forthcoming
- Johannes Muhle-Karbe, Xiaofei Shi, and Chen Yang, An Equilibrium Model for the Cross-Section of Liquidity Premia, Mathematics of Operations Research, forthcoming
- Sebastian Herrmann, Johannes Muhle-Karbe, Dapeng Shang, and Chen Yang, Inventory Management for High-frequency Trading with Imperfect Competition, SIAM Journal on Financial Mathematics, 11(1):1-26, 2020.
- Nan Chen, Min Dai, Qiheng Ding and Chen Yang, Optimal Investment under Block-Shaped Order Books, working paper.
- Yizhou Cao, Min Dai, Steven Kou, Lewei Li, and Chen Yang, Designing Stable Coins, submitted.
- Min Dai, Steven Kou, and Chen Yang, A Stochastic Representation for Nonlocal Parabolic PDEs with Applications, Mathematics of Operations Research, forthcoming.

Homepage: https://www1.se.cuhk.edu.hk/~cyang/